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ABSTRACT

We consider the nonlinear elliptic degenerate equation

2 32u e
(1) - X |4+ —] +# 2u = f(u) in Q
2 a

Ix dy

where

Qa = {(x,y) ¢ Rz ¢ O < < a; |y| < a}

O
for some constant a > 0 and f is a C function on R such that

f(0) = £'(0) = 0. Our main result asserts that: if u « C(ﬁa) satisfies
(2) u(o,y) = 0 for Iy] < a ,

then x-zu(x,y) € Cm(ﬁa ) and in particular u e Cm(s.za [

/2 /2
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SIGNIFICANCE AND EXPLANATION

Special solutions of the Yang-Mills field equations of theoretical physics

‘ ) may be obtained by solving a boundary value problem for a nonlinear elliptic
equation in a two dimensional half space. This equation degenerates at the

boundary of the region and this degeneracy makes it a delicate matter to study

how the solutions behave near the boundary. In this work it is proved that the

weak solutions previously known to exist are in fact smooth up to the boundary.
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BOUNDARY REGULARITY FOR SOME
NONLINEAR ELLIPTIC DEGENERATE EOUATIONS

Haim Brezis and Pierre-Louis Lions
1. Introduction

This paper deals with the question of boundary regularity of solutions of

a nonlinear elliptic degenerate equation of the form
2 ;
(1) - X Au + 2u = f(u) in Qa

where

A = D2 + 02
X Y

W {(x,y) e'Rz; 0<x<a, |yl <a}
for some constant a > 0, and f is a C°° function on R such that

(2) £(0) = £'(0) =0 .

Our main result is the following

Theorem 1. Assume u ¢ Cﬂ(ﬂa) n C(ﬁa) satisfies (1) and
(3) u(o,y) =0 for |y| <a .

Then x-zu(x,y) € Cm(ﬁa and in particular u € Cm(ﬁa

/2) /2).

Equation (1) occurs in the theory of multimeron solutions to Yang-Mills field

equations (see [2)). More precisely the equation in [2) is:
- x2 Ay + w3 -y =0 in Qa
together with the boundary conditions:
Vv(O,y) =+ 1 .
If we set u =y ¥ 1 we find

- x2 Au + (utl)3 - (utl) =0

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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that is (1) with f(u) = -u” ¥ 3u°, 1In [3] it is only proved that { is con-

tinuous up to the boundary (except at the points where ¢ changes sign). Theorem
1 shows that ¢ is c up to the boundary (except at the points where ¢ changes
sign) .

We thank A. Jaffe for suggesting the problem and C. Goulaouic for usetul dis-
cussions.

2. Some lemmas.

The proof relies on some lemmas

Lemma 2. Assume u « Cz(ua) n C(Ea) satisfies: §
(4) | - x> du + 2u| < a(u2 + x4) on E
for some constant «a §
(5) u(0,y) =0 for |y| <a .

Then, there is a constant £ such that .

2
lu(x,y)| < Bx“ on 8z .

Proof of Lemma 2. For b < a set

Mb=SQ\;p luf .

Since by (5) Mb +0 as b +> 0, we may fix b so small that
2
(6) ab < 1/2

(7) aMb < 17400 .

We shall establish that

(8) lu(x.O)l < sz for Qexeh ,
b4
where
100
(9) A = Max{ab", ———ffh} .

b2




The conclusion of Lemma 2 follows easily.

the function

(10)

vix,y) = ax? - Bx4 + Cy4

where A 1is defined by (9),

(11)

(12)

B =
2b

4

A direct computation shows that

(13)

(14)

(15)

(16)

(17)

- x2 Av + 2v > a(v2 + x4) on Qb ¥
vix, * b) > Mb for 0 <x<D> ,

v(b,y) >M, for 0<y<a ,

a Supv <1

0

v >0 on Qb

We now derive, using the maximum principle that

(18)

u<v on Qb -

Indeed by (14) and (15), u <v on BQb .

Suppose, by contradiction, that (u-v) achieves a positive maximum at

(xo, yo) € nb .

We would have

A(u-v) (x ) <0 .

o' Yo

On the other hand, we deduce from (4) and (13) that

- x° Afu=v) + 2u - 2v < a(u2 - v2) on Q

b

In order to prove (8) we introduce




Theretore
2 ulu(x“. y“) + v(x“. yu)]

am o+l (by (16))

and thus uMl * 1 = a contradiction with (7).

Lemma 3. Under the assumptions of Theorem 1 there exist constant 8, such that

K | e 2 .
Duix,y)] < B = on NN . ¥
y K a/2
for all k O.1:2
Proof of Lemma 3. Since f(0) = 0 we have
| ¢ ' bt .
f(u)| < Clul on 0
a
and by (1)
u |
lau] < (C + .‘)L~;‘ on .
- b a
X
o~ ’ ‘\
It follows from Lemma 2 that Au ¢ L (9 ,) . We deduce from the I reqularity
a/2
. 1 - =
theory (see e.g. [1]) that u ¢ C (D ). In particular D u ¢ C( )  and
a4 v a «

[\yu(o.y) = 0 for ’yl ad
(since ui0,y) = 0 for |y| < a). Also, differentiating (1) with respect to v

we find
Y

=X A(Du) +2(Duw) = f'(WDu on 0
y y y a

By (2) we have

e | < Clul

and from Lemma 2 we see that

] -

[£'(w) | < C8 x°, on @
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Consequently

|f'(u)Dyu|2 & CB(|Dyu[2 L

and Lemma 2 applied to Dyu shows that

2
lDyu| 5 81x on 93/8 .

The conclusion of Lemma 3 for k = 1 follows directly. When k > 2 we proceed

in a similar way, by induction, differentiating (1) k times with respect to vy.

Lemma 4. Assume ¥ € C2(]0,a[) n C([0,a]) satisfies

-xzDidx)+ 20(x) = h(x), 0<x<a ,

where h ¢ Lm(o,a).
Set Y(x) = x_zw(x), then

—4 X
D.Y(x) = - x © [ h(t)dt, 0 <x<a
s 0

Proof. Indeed we necessarily have

C a s
o) = =+ cx?+ x| [ hwat
X 2 4
x s O
for some constants C1 and C2. Since the last term remains bounded as
we must take C. = 0, and the conclusion follows.

1

3. Proof of Theorem 1.

We have by (1)

- x2D2u + 2u = x2D2u + f(u) .
x Yy

Let v(x,y) = x-zu(x,y) . We deduce from Lemma 4 that

iy 2.2
(19) Dvixy) == x [ [t Doult,y) + flult,y))ldt .
0




2 w

Set g(u) = y “f(u) so that by (2), g s a ¢ function on K. Changing
t :
the variable ¢ in (19) into s = = we find
X
1 y

r 2 p. - - 4
(20) va(x,y) Aty (va(sx,y) * v o(sx,v)g(sTx visx,y))]ls ds .
oty
\

It follows from Lemma 3 (applied with k = 0 and k = 2) that

(21) ‘Dx\’(x,y) | < \‘[x: on :Jﬂ 5 #
Next, if we differentiate (2) «x times with respect to Y we obtain, using

Lemma 3, thar
i (22) D Dkv(x,y)I < C on @ ‘
X y g=

for all k.

We may now differentiate (20) once with respect to «x and Kk times with

respect to y and we find that

) k l\.~ )
‘Dxnyv(x,y)‘ ZC on

? ; X
for all k. Proceeding by induction we obtain estimates for D D ,V and the

conclusion of Theorem 1 follows (note that we have even an estimate of the form

R :
}DxD:v(X.y)g < Cx when 1t is odd).
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ABSTRACT (continued)
£(0) = £'(0) = 0. Our main result asserts that: if u ¢ C(ﬁa) satisfies
(2) u(0,y) = 0 for |yl <a ,

-2 W - . ¥ ® -
then x “u(x,y) € C (Qa/2) and in particular u ¢ C (Qa )
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